潔淨能源系統整合與應用人才培育——中小學能源教育教案 《微水力發電機的設計與製作》統整性探究課程教學活動設計

		24年 フ	 K力發電機的設計與製作			武士區		
單元名稱				設	計者			
			(大六法 BIG SIX)		m/		姓老師、陳怡均老師	
實施年級		六年			節數	20 節	· 共 800 分鐘	
彈性學習課程		統整性探究課程:□主題 □專題 ■議題						
		互動與關連:藉由課程設計,讓學生了解知識和現實生活的關聯性。						
設計理念		差異與多元:學生比較日常生活中不易被察覺異同的物品,了解其差異性。						
		結構與功能:透過有系統的方式引導學生面對問題、剖析問題、解決問題。						
		系統與模型:建構淺顯易懂的模型,讓學生對微水力發電機有初步概念。						
			設計依	據				
		1.	能透過跟同學討論,確定研究	主		E-A2	具備探索問題的思考能	
			題。				力·並透過體驗與實踐處理	
		2.	能運用網路和圖書館的資源,	並			日常生活問題。	
			善用關鍵字查詢,將可用的資	源		E-A3	具備擬定計畫與實作的能	
			按優先順序列出。				力,並以創新思考方式,因	
		3.	能透過網路或與專家聯絡,取	得			應日常生活情境。	
	學習		協助以找到合適的資訊。			E-B2	具備科技與資訊應用的基	
	表現	4.	能分析選出與主題有關的部				本素養,並理解各類媒體內	
			份,將資料編輯成所需要的資	Z	核		容的意義與影響。	
學習			訊。		心	E-C2	具備理解他人感受,樂於與	
重點		5.	能運用文書處理、簡報或多媒	體	素		人互動,並與團隊成員合作	
			呈現資料。		養		之素養。	
		6.	能自我檢核,評斷自己是否會	多				
			種資料搜尋的方法。					
		1.	確定主題					
		2.	明定搜尋策略					
	學習	3.	取得合適的資訊					
	内容	4.	運用資訊來解決問題					
	I	5.	將資訊分類及彙整					
		6.	評估過程與結果					
	CX2		上 上源教育】能源意識					
議題	學習	【能源教育】能源概念						
融入	主題	【쉵	 能源教育】能源發展					

		【能源教育】行動參與		
		【科技教育】操作技能		
	【科技教育】綜合能力			
		【資訊教育】資訊科技與合作共創		
		能 E1 認識並了解能源與日常生活的關聯。		
		能 E3 認識能源的種類與形式。		
		能 E4 了解能源的日常應用。		
	實質	能 E6 認識我國能源供需現況及發展情形。		
	內涵	能 E7 蒐集相關資料、與他人討論、分析、分享能源議題。		
		科 E5 繪製簡單草圖以呈現設計構想。		
		科 E7 依據設計構想以規劃物品的製作步驟。		
		資 E5 使用資訊科技與他人合作產出想法與作品。		
連結其他領域		超學科:社會領域、自然領域		
教材來源		自編教材《水力發電——大六法與發電機》、《水力發電廠》		
教學設備		電腦、單槍投影機、海報紙、麥克筆。		
数37口 /				

學習目標

- 1. 透過大六法 BIG SIX 探究式學習法,引導學生先確定研究主題,並能過濾不同的資訊來源,找到適合主題的資訊,在專家指導下,找到解決製作微水力發電機所遇到問題的方法。
- 2. 在大六法 BIG SIX 探究式學習法中,能跟同學進行討論、共同腦力激盪,並在大量閱讀有效的資訊後,能擬定微水力發電機的初步構想,再進一步落實。
- 3. 在廣泛的資訊來源中, 能判斷並篩選出合適的資訊, 並能遵守網路資訊使用禮儀。
- 4. 在團隊討論與共同創作中,能培養出互助的精神,能互相提攜、互相幫助、互信互諒, 共創共好的榮景。

教學活動設計				
教學活動內容及實施方式	時間	備註		
【活動一 大六法概論】	3 節	單槍		
一、準備活動		電腦		
(一)教師準備		學生手冊		
編製學生活動手冊、微水力發電影片。		影片		
(二)學生準備				
查詢水力發電的相關資料				
(三)引起動機				
觀看觀看兩種不同扇葉設計的微水力發電機影片				
1.水車式扇葉				

https://www.youtube.com/watch?v=lwG6G3INTAc

2.垂直式扇葉

https://www.youtube.com/watch?v=F_3xYjZhKjA

二、發展活動

(一)大六法是什麼?

大六法(BIG SIX)是一種資訊尋求問題解決的技能,其名詞產生為取其六個步驟的英文名稱組合。由美國 Eisenberg 和 Berkowitz 二位學者共同提出,為培養資訊素養的技能之一。透過

有系統的方式引導學習者面對問題、剖析問題、解決問題,過程 強調「資訊」處理。

- (二)大六法運用在資料處理上必需要先界定問題、定義問題。
 - 1.研究主題是什麼?
 - 2.該如何做?
 - 3.需要解決的困難?
 - 4.需要回答的問題?
 - 5.需要什麼的資訊?
 - 6.完成時該如何呈現?
 - 7.確認所需資訊:在課堂上討論或透過網際網路線上討論·集思廣益,課後可以使用 E-Mail、LINE 群組或網路教學平臺交流,彼此討論界定出所需要的資訊。

(三)搜尋策略

- 1.確定資源範圍
 - (1)運用圖書館的資源?
 - (2)利用網路檢索相關資源?
- (3)請教家長或專家?
- 2.要用關鍵詞杳詢或是用主題杳詢?
- 3.將可能用的資源,列出優先順序。
- (四)取得資訊
 - 1.找到資訊來源: 運用學校或社區圖書館找到合適的資訊資源, 或

透過網路找到合適的資源。 2.誰可以幫忙找到需要的資料? 3.找到資訊:可透過網路與相關專家連絡,並取得協助。 (五)運用資訊 1.閱讀資訊後,判斷: (1)哪些資訊是適切的? (2)如何紀錄資訊? (3)如何有效呈現資料? (4)資訊運用過程中遇到哪些困難? (5)該如何解決? 2.摘錄資訊:經瀏覽、閱讀、組織、分析選出與主題有關的部份, 將資料編輯成所需要的資訊。 (六)彙整資訊 1.組織資訊:將蒐集到的資料分門別類,重新組織資訊。如何呈現 研究結果?結論是什麼? 2.呈現整合的資訊:運用文書處理、簡報或多媒體呈現資料。 (七)評估資訊 1.評鑑結果(有效性): (1)完成自我檢核表 (2)能學會多種資料的搜尋的方法。 2.評鑑過程(效率): (1)完成任務需求嗎? (2)這是最好的作品了嗎? (3)是否真正瞭解了? (4)下一次執行任務時,會如何改進? 三、綜合活動 (一)畫出微水力發電機設計圖 運用大六法學習策略,分組討論微水力發電機的設計構想,並繪 出設計圖。 ~第一至三節結束~ 【活動二 水力發電廠專題演講】 1 節 講綱 一、準備活動 (一)教師準備 聯繫水力發電廠的參觀事宜

(二)學生準備

蒐集水力發電廠的相關資料

二、發展活動

邀請烏山頭水庫水力發電廠廠長進行專題演講,講題「水力發電及一滴水發電三次」。

八田與一為解決廣大嘉南平原因缺水而多為旱作的狀況,著手調查、設計嘉南大圳系列工程,並於 1920 年開始興建烏山頭水庫等,歷經十年完工。水庫集水區 58 平方公里,水庫水深可達 32 公尺,容積約 1.5 億立方公尺,為當時世界第三大、亞洲最大之水庫。利用臺南市官田區、六甲區、大內區、東山區丘陵地所圍成的低窪谷地形勢築壩而成,壩體最大高度為 56 公尺,壩頂寬 9 公尺,壩頂長 1,273 公尺,壩底寬約 303 公尺。若由空中鳥瞰,則集水區形如珊瑚,故有「珊瑚潭」的美稱。

水源截流自官田溪·但因水量供應不足·遂建造 3479 公尺的烏山嶺引水隧道將曾文溪水引流至水庫內·引流之河水先經過山脈東側的曾文發電廠·而後到達山脈西側之西口水力發電廠·溪水進入烏山頭水庫後·放水至灌溉圳道前·還會再經過烏山頭水力發電廠·使得烏山頭水庫不但具備儲水功能·尚能產生三次發電的價值·電力除供給廠區營運自用外·其餘則賣給臺灣電力公司。「烏山頭水庫暨嘉南大圳水利系統」已被列為臺南市定文化景觀。

三、綜合活動

綜合討論 Q&A

~ 第四節結束 ~

【活動三 微水力發電機設計草稿研討會】

- 一、準備活動
- (一)教師準備
 - 1.激請干世杰老師入班指導學牛微水力發電機設計草稿之可行性
 - 2.學生微水力發電機設計草稿掃描檔。
- (二)學生準備

微水力發電機設計草稿

二、發展活動

教師希望學生對微水力發電機有更深入了解,邀請專家入班授課,提供學生專業的知識及諮詢的管道。自然領域翹楚王世杰老師細心聆聽學生報告,再給予建議並解答學生疑難問題。

三、綜合活動

感謝王老師前來指導,並提點學生王老師所講的重點。

2 節

單槍 電腦

微水力發 電機設計 草稿掃描

檔

【活動四 水力發電廠戶外教育】	1天	活動手冊
一、準備活動	(8 節)	
(一)教師準備		
聯繫水力發電廠的參觀事宜		
(二)學生準備		
蒐集水力發電廠的相關資料		
二、發展活動		
參觀烏山頭水庫水力發電廠、八田水力發電廠、西口水力發電廠		
(一)烏山頭水庫水力發電廠		
嘉南農田水利會為響應政府使用再生能源政策與開發財源.乃		
計劃利用烏山頭水庫與送水口處約 20 餘公尺水頭落差‧開發水		
力發電廠,期使既有水利設施發揮最大效益及水資源充份利		
用,同時增進水利會多角化經營契機。		
(二)八田水力發電廠		
八田水力發電廠為一座位於臺灣臺南市官田區的小型水力發電		
廠・該發電廠是嘉南農田水利會繼烏山頭水力發電廠以及西口		
水力發電廠後所投資興建的第三座水力發電廠。八田水力發電		
廠其名稱由來為紀念臺灣日治時期規畫興建烏山頭水庫的「嘉		
南大圳之父」八田與一而得名。		
八田水力發電廠最初為嘉南農田水利會為因烏山頭水庫在非農		
田灌溉期時,舊送水口每天仍須放水供應工業及民生用水,然		
而,舊送水口一直以來僅將水流直接放出,所產生之可利用水		
力能源只能任其流失,因此嘉南農田水利會即擬訂利用此水力		
能量於舊放水口鋼管出口處落差 24 公尺設計水力發電廠一		
座。並且,該水力發電廠在舊送水口放流量較小時,也可以發		
電。彌補了烏山頭水力發電廠在水庫 10 月因放水量不穩定,發		
電機組時開時停,以及非灌溉期的11、12、1月水庫僅供應民		
生用水和工業用水,放水量低於每秒 8 立方公尺,發電廠無法		
發電,發電機組只好停機進行歲修的狀況。		
(三)西口水力發電廠		
西口水力發電廠,是臺灣的一座水力發電廠,位於臺南市東山		
區,烏山頭水庫東北側主流上,西口豎坑(俗稱西口小瑞士)		

第一號土堰堤下游附近,由嘉南農田水利會與台塑關係企業旗		
下的台灣化學纖維股份有限公司轉投資成立的嘉南實業有限公 		
司經營・是臺灣第二座民營水力發電廠。		
西口水力發電廠最早為利用曾文水庫旗下曾文發電廠的發電尾		
水在東口導入烏山嶺隧道後・於西口進入烏山頭水庫・而由於		
在溪水由西口導入烏山頭水庫之間,其水位高於水庫最高水位		
約 20 公尺,此落差由豎井溢流道消能後進入水庫。有鑑於該		
落差可為充份有效運用,故嘉南農田水利會在烏山頭水力發電		
廠完工啟用後,獲得財源挹助,計劃開發西口水力發電廠。		
三、綜合活動		
(一)綜合討論 Q&A		
(二) 今日重點歸納與統整		
~第七至十四節結束~		
【活動五 微水力發電機發表練習】	2 節	海報
一、準備活動		
(一)教師準備		
, · · · · · · · · · · · · · · · · · · ·		
 (二)學生準備		
() 微水力發電機海報		
一、發展活動		
學生於課餘期間著手進行微水力發電機製作,微水力發電機完成		
後進行海報繪製,將製作的歷程、創意構想及材料繪製在海報上。		
每組並進行 5~6 分鐘的口頭發表練習,且每一位組員都需要上		
章。		
一		
(二)鼓勵及歸納統整		
~ 第十五至十六節結束~		
【活動六 微水力發電機比賽】	4 節	
一、準備活動	רוא י	学工口袋 微水力發
一一		電機
(
(二)學生準備		
(一) 学工学園		
一、發展活動		

- (一)學生到臺南市東山區吉貝耍洗衫坑進行微水力發電機比賽。學生先進行試運轉,再按照組別進行發表與實作。
- (二)微水力發電機比賽地點選定在西拉雅族吉貝耍部落的水圳旁, 經由各組口頭發表及微水力發電機實際運轉中評選出優秀作 品。其後參觀西拉雅族部落、麻豆古港及倒風內海故事館,讓 此次戶外教育不只是一場比賽,更是一次深度的文化體驗日。

三、綜合活動

- (一)綜合討論 O&A
- (二)透過一連串的課程,教師除了從微水力發電機成品檢視教學成果,亦可從學生的心得報告中察覺教學歷程與學生所學是否一致,以做為課程模組的完結。

~第十七~二十節結束~ ~本課程結束~

學習單題目

《水力發電——大六法與發電機》

- 一、定義問題(定義問題、確認所需資訊)
 - 1.名詞內涵?該如何做?需要解決的困難?需要回答的問題?
 - 2.需要什麼的資訊?主題內容包括哪些?
 - 3.該如何進行(課堂或線上討論)?
- 二、搜尋策略(確定資源範圍、列出優先順序)
 - 1.哪裡可找到與主題有關的資料?有哪些可用的資源?網站、書報雜誌、光碟、訪問 (面談/電話/E-mail)、問卷調查等。
 - 2.列出與主題相關的關鍵詞?並嘗試把它們的關係連結起來。
 - 3.如何找到所需資訊?哪些參考資源較適合我的主題?
 - 4.關鍵詞?
 - 5.任務:依方框提示,完成解決問題策略的「架構圖」。
- 三、取得資訊(找到資訊來源、找到資訊)
 - 1. 資料在哪裡找到的?(站名、網址、書名、作者、出版社)
 - 2.記下內容摘要?資料是哪位同學提供?
 - 3.任務:依方框提示,完成「資料紀錄表」,包含:標題、資料來源、內容摘要。
- 四、運用資訊(閱讀資訊、摘錄資訊)
 - 1.我完全明白資料的內容嗎?
 - 2.資料內容有哪些部分與研究主題有關?
 - 3.如有不明白的地方應怎麼辦?有哪些人可以幫忙?
 - 4.任務:依方框提示,完成「問題解決表」。

- 五、彙整資訊(組織資訊、呈現整合的資訊)
 - 1.資料與研究主題的哪部分有關?數據以哪種方式表達最佳?
 - 2.哪些方法展示主題?製作和展示主題需要什麼工具/技術?
 - 3.我要負責的工作是什麼?我有能力完成被分派的工作嗎?
 - 4.任務一:畫出「水力發電機」的設計圖及使用的材料。
 - 5.任務二:畫出一份大海報設計圖作為水力發電機比賽當日之用。
- 六、評估資訊(評鑑結果、評鑑過程)
 - 1.我在主題課程中學到了什麼技能?將來是否仍然適用?
 - 2. 這次我可以做得更好嗎?下次我可以在哪些方面做得更好?
 - 3.老師和同學的評語給我的啟發?是否達到主題課程的要求?
 - 4.任務:完成「自我檢核表」。

《水力發電廠》

- 一、今日參觀三座水力發電廠,請描述並畫出印象最深刻的一座水力發電廠。
- 二、請畫出並敘述慣常式水力發電的發電原理。
- 三、請比較慣常式水力發電與抽水蓄能式水力發電的異同。
- 四、曾文溪的溪水能夠發電三次,試著畫出曾文溪、曾文水庫、曾文水力發電廠、東口、 烏山嶺引水道、西口、西口水力發電廠、官田溪、烏山頭水庫、烏山頭水力發電廠、 嘉南大圳的示意圖。

參考資料

維基百科,自由的百科全書

https://zh.wikipedia.org

Biq 6 與專題研習

http://www.hkedcity.net/iclub_files/a/1/119/webpage/project_learning_03/feat ure/sept_03b/proj_learning_big6_2.htm

Big Six 大六教學法 在教學上的應用分享

http://ms1.sses.ilc.edu.tw/blog/gallery/3/big6.pdf

資訊問題解決大六法(Big Six)在主題式學習之應用與探討

http://www.estmue.tp.edu.tw/~chiayen/research/taipei/91action-ok.pdf Big6 資訊大六能力

http://e-learning-101.blogspot.tw/2011/01/big6.html

透過專題研習培養學生資訊素養 第二節

http://ifile.hkedcity.net/1/002/024/public/IL_session%202_PowerPoint.pdf 水力發電 - 維基百科·自由的百科全書

https://zh.wikipedia.org/wiki/%E6%B0%B4%E5%8A%9B%E7%99%BC%E9%9B

%BB

曾文水庫 - 維基百科,自由的百科全書

https://zh.wikipedia.org/wiki/%E6%9B%BE%E6%96%87%E6%B0%B4%E5%BA%AB

曾文發電廠 - 維基百科,自由的百科全書

https://zh.wikipedia.org/wiki/%E6%9B%BE%E6%96%87%E7%99%BC%E9%9B%BB%E5%BB%A0

西口小瑞士 - 維基百科,自由的百科全書

https://zh.wikipedia.org/wiki/%E8%A5%BF%E5%8F%A3%E5%B0%8F%E7%91%9E%E5%A3%AB

西口水力發電廠 - 維基百科,自由的百科全書

https://zh.wikipedia.org/wiki/%E8%A5%BF%E5%8F%A3%E6%B0%B4%E5%8A %9B%E7%99%BC%E9%9B%BB%E5%BB%A0

烏山頭水庫 - 維基百科,自由的百科全書

https://zh.wikipedia.org/wiki/%E7%83%8F%E5%B1%B1%E9%A0%AD%E6%B0%B4%E5%BA%AB

烏山頭水力發電廠 - 維基百科,自由的百科全書

https://zh.wikipedia.org/wiki/%E7%83%8F%E5%B1%B1%E9%A0%AD%E6%B0%B4%E5%8A%9B%E7%99%BC%E9%9B%BB%E5%BB%A0

八田水力發電廠 - 維基百科,自由的百科全書

https://zh.wikipedia.org/wiki/%E5%85%AB%E7%94%B0%E6%B0%B4%E5%8A %9B%E7%99%BC%E9%9B%BB%E5%BB%A0

經濟部能源局 能源統計年報

https://www.moeaboe.gov.tw/ecw/populace/content/ContentLink.aspx?menu_id=378

臺灣電力股份有限公司-資訊揭露

http://www.taipower.com.tw/content/new info/new info-c36.aspx

抽水蓄能電站 - 維基百科,自由的百科全書

https://zh.m.wikipedia.org/zh-tw/%E6%8A%BD%E6%B0%B4%E8%93%84%E8 %83%BD%E7%94%B5%E7%AB%99

明潭發電廠 - 維基百科,自由的百科全書

https://zh.m.wikipedia.org/wiki/%E6%98%8E%E6%BD%AD%E7%99%BC%E9%9 B%BB%E5%BB%A0